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Driven tunneling dynamics: Bloch-Redfield theory versus path-integral approach
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In the regime of weak bath coupling and low temperature we demonstrate numerically for the spin-boson
dynamics the equivalence between two widely used but seemingly different roads of approximation, namely,
the path-integral approach and the Bloch-Redfield theory. The excellent agreement between these two methods
is corroborated by an efficientanalyticalhigh-frequency approach: it well approximates the decay of quantum
coherence via a series of damped coherent oscillations. Moreover, a suitably tuned control field can selectively
enhance or suppress quantum coherence.

PACS number~s!: 05.40.2a, 82.20.Mj, 03.65.Db
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The dynamics of driven quantum systems which inter
with a large number of environmental degrees of freed
@1–3# plays an increasingly prominent role: its vast applic
bility ranges from tunneling phenomena in solid state ph
ics, the study of electron and proton transfer in conden
phases, to the gate operation in quantum computing dev
@4#, to name but a few. In particular, the use of prope
tailored external driving forces enables one to selectiv
manipulate a quantum transport process. The various c
munities typically rely on different methods of descriptio
The two most popular approaches for a portrayal of the t
evolution of the corresponding reduced density ma
~RDM! are either based on the system-bath coupling exp
sion obtained by use of a projector operator method~com-
monly known as theBloch-Redfield formalism!, or on the
expansion in the coupling matrix elementD ~such as a tunne
splitting! by use of~real-time! path-integral methods. Nev-
ertheless, there exists practically little crosstalk between
practitioners of the two approaches, and even more,
much of detailed comparison between the two seemingly
ferent roads of approximation needed for practical calcu
tions.

For the archetype quantum system of a driven spin-bo
dynamics, namely, the driven dissipative two-state sys
~TSS! dynamics~TSS! @3#, the application of the so terme
noninteracting blip approximation~NIBA !, i.e., the leading
order result in the tunnel couplingD2, produced many im-
pressive successes in entangling the complexity of dri
open quantum systems. This scheme works best in the
gime of strong friction and/or high thermal temperatur
Much less is presently known, however, about the co
sponding complexity of the driven dynamics in the de
quantum regime at low temperatures and weak system-
coupling, where the NIBA is failing and higher order term
in the series inD must be accounted for@5,6#. In practice,
this latter regime is of relevance for many situations such
e.g., for the challenge of ‘‘battling decoherence’’ in quantu
computing schemes@4#.

Our main objective with this work is to enlight the adva
tages and disadvantages of the two approaches. In doin
we present three major findings:~i! We numerically demon-
strate the equivalence for the driven tunneling dynamics
PRE 611063-651X/2000/61~5!/4687~4!/$15.00
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tween the path-integral method beyond NIBA and t
coupled set of nonstationary, Markovian Bloch-Redfie
equations.~ii ! Starting from the generalized master equati
~GME! for the RDM, obtained within the path-integral ap
proach, we arrive at ananalytic high driving frequency ap-
proximation that compares well with comprehensive nume
cal findings. ~iii ! With this analytical result one can
efficiently determine the optimal control of quantum cohe
ence.

Our starting point is thedriven spin-boson Hamiltonian
@3# where the TSS is bilinearly coupled to an ensemble
harmonic oscillators, i.e.,

Ĥ~ t !52\@Dŝx1e~ t !ŝz#/21(
i

\v i~ b̂i
†b̂i11/2!

1ŝz(
i

ci~ b̂i1b̂i
†!/2, ~1!

with ŝ i being Pauli spin matrices. HereD describes the cou
pling between the two states, ande(t) is the external, time-
dependent control field. The basis states are chosen such
uR& ~right! and uL& ~left! are the localized eigenstates of th
‘‘position’’ operator ŝz . All effects of the Gaussian bath o
the TSS are captured by the force autocorrelation fu
tion @1–3# M(t)5(1/p)*0

`dvJ(v)@cosh(\v/2kBT2 ivt)/
sinh(\v/2kBT)#, where the spectral density of the enviro
ment, J(v)5p\22( ici

2d(v2v i)52pave2v/vc, is as-
sumed to be of Ohmic form with exponential cutoff an
dimensionless coupling strengtha. The dynamical quantities
of interest are the expectation valuess i(t)ªTr$r̂(t)ŝ i%
which, together with the unit matrixÎ , comprise the com-
plete reduced density matrixr̂(t)5 Î /21( i 5x,y,zs i(t)ŝ i /2.
In the following we assume that at timet50 the particle is
held at the right sitesz511, with the bath being in therma
equilibrium.

Path-integral approach. For a harmonic bath the exac
formal solution for the evolution of thes i(t) can be ex-
pressed in terms of real-time double path integrals@1–3#.
This procedure yields the formally exact set of equatio
@3,5,6#
R4687 ©2000 The American Physical Society
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ṡz~ t !5E
0

t

dt8@Kz
(2)~ t,t8!2Kz

(1)~ t,t8!sz~ t8!#,

~2!

sx~ t !5E
0

t

dt8@Kx
(1)~ t,t8!1Kx

(2)~ t,t8!sz~ t8!#,

and sy(t)52ṡz(t)/D. Here, the kernelsKi
(6) , i 5x,z are

found in the form of a series expansion inD. Because the
exact series expression cannot be evaluated to all ord
approximation schemes necessarily must be invoked. A
miliar scheme is the noninteracting-blip approximati
~NIBA ! @1–3#, which corresponds to a truncation of the s
ries expansion to lowest order inD. The NIBA is approxi-
matively valid only for the dynamics ofsz(t) if on average
^e(t)&50. However, in the presence of a static asymme
component, it breaks down for weak dampingand low tem-
peratures@2,3#. A systematic weak damping approximatio
for the kernelsKi

(6) in Eq. ~2!, which circumvents the weak
nesses of the NIBA has been discussed in@5,6#. By keeping
track of the bath-induced correlations tolinear order in a,
the whole series expansion inD can be summed analytically
The kernelsKz

(6) read

Kz
(1)~ t,t8!5D2 cos@z~ t,t8!#@12Q8~ t2t8!#

1E
t8

t

dt2E
t8

t2
dt1D4 sin@z~ t,t2!#

3P0~ t2 ,t1!sin@z~ t1 ,t8!#@Q8~ t2t8!

1Q8~ t22t1!2Q8~ t22t8!2Q8~ t2t1!#,
~3!

Kz
(2)~ t,t8!5D2 sin@z~ t,t8!#Q9~ t2t8!

2E
t8

t

dt2E
t8

t2
dt1D4 sin@z~ t,t2!#P0~ t2 ,t1!

3cos@z~ t1 ,t8!#@Q9~ t2t8!2Q9~ t22t8!#.

Here, the first term inKz
(6) represents the weak-couplin

form of NIBA. In the remaining contribution the term
P0(t2 ,t1) accounts for all tunneling events during the tim
interval @ t1 ,t2# that are not influenced by damping. Henc
P0(t2 ,t1) solves the generalized master equation~GME! for
sz(t) ~2! with the zero-damping kernelsK (1)(t,t8)
5D2 cos@z(t,t8)# and K (2)(t,t8)50, where z(t,t8)
5* t8

t dt9e(t9) captures the effects of the external force. T
bath-influence is encapsulated in the functionsQ8(t) and
Q9(t) being the real and imaginary part, respectively, of
twice integrated bath correlation functionM(t).

Bloch-Redfield formalism. In the Nakajima-Zwanzig
theory@7# it is well known how to construct an exact gene
alized master equation for the reduced density matrix w
the help of projection operators. For intermediate to h
temperatures and/or strong damping, but for arbitrary d
ing, a master equation forr̂(t) can be obtained within the
small polaron theory, yielding equations that are equival
to the NIBA @8,9#. For weak coupling to the bath the proje
tion operator technique yields the GME in Born approxim
tion that can be further simplified to the Markovian kine
equations without loss of accuracy to the leading order
rs,
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dissipative coupling. For strong harmonic driving this obje
tive was first achieved in 1964 by Argyres and Kelley@10#.
Following the reasoning in@10# the kinetic equations for the
RDM of a stochastically driven TSS were found in@11~a!#
and in a different way in@11~b!#. Generalizing@10,11# to the
case of a spin-boson problem with anarbitrary control field
we find the coupled equations

ṡx~ t !5e~ t !sy2Gxx~ t !sx2Gxz~ t !sz2Ax~ t !,
~4!

ṡy~ t !52e~ t !sx1Dsz2Gyy~ t !sy2Gyz~ t !sz2Ay~ t !,

with Gyy(t)5Gxx(t) and ṡz52Dsy . Here the time-
dependent ratesG i j (t)5*0

t dt8M8(t2t8)bi j (t,t8), together
with the inhomo-
geneities Ax(t)5Im F(t), Ay(t)5ReF(t), with F(t)
52*0

t dt8M9(t2t8)URR(t,t8)URL(t,t8) determine the dissi-
pative action of the thermal bath on the TSS. The functio
M8 and M9 are the real part and imaginary part, respe
tively, of the correlation functionM. The quantities
URR(t,t8)5^RuU(t,t8)uR& and URL(t,t8)5^RuU(t,t8)uL&
are matrix elements of the time evolution opera
U(t,t8) of the nondissipativedriven TSS. The functions
bi j read bxx5uURRu22uURLu2, bxz52 ReURRURL , and
byz522 ImURRURL . This main result in Eq.~4! yields a
consistent Bloch-Redfield-type description of the externa
driven spin-boson dynamics. Equations of the form~4! were
derived by Bloch and Redfield in 1957@12# to describe spin
relaxation in nuclear magnetic resonance, and in@13# for the
dynamics of the undriven spin-boson problem. Our set
Eqs.~4! generalizes@13# to general driving forces. Note tha
these derived equations are valid in the parameter reg
a ln(vc /D)!1, where the frequency corrections to the d
namics incurred due to the dissipation are small, and
perturbative treatment is fair. One can show that for the
driven case,e(t)5e0, the analytic solution of Eq.~4! in first
order in a reproduces the analytical path-integral wea
damping results, cf.@2,6# and Eq.~5! below with zero ac-
field.

Analytic high-frequency solution. Up to now no assump-
tions on the deterministic control field have been ma
Next, we focus our attention on a monochromatic field of t
form e(t)5e01s cosVt. Moreover, we restrict our investi
gations on thesz(t)-dynamics, as this quantity is of prim
interest for describing tunneling properties. Because
path-integral approach yields a closed integro-differen
equation forsz(t), we start from the generalized mast
equation ~2!. In the high-frequency regime @V
@$D,e0 ,GR%, with GR defined in Eq.~6! below# a good ap-
proximation to the dynamics ofsz(t) amounts to perform
the substitution R@z(t,t8)#→^R@z(t,t8)#&5J0(x)R@e0(t
2t8)# into the kernelsKz

(6)(t,t8), whereR5cos or sin and
x5(2s/V)sin@V(t2t8)/2#. Here ^ & denotes time-averaging
andJ0 is the zero order Bessel function. The resulting ge
eralized master equation is in the form of a time-convolutio
A solution is conveniently obtained by use of Laplace tra
formation techniques, upon generalizing a line of reason
proposed in Ref.@5#. By expanding the Bessel functio
J0(x) in Fourier series, and upon introducing the fiel
dressed tunneling splittingsDn5uJn(s/V)uD and the photon-
induced asymmetriesen5e02nV, we end up with
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sz~ t !5P`1~P02P`!e2GRt1 (
n52`

`

Cn cos~ ũnt !e2Gnt.

~5!

Conservation of probability yieldsP01(nCn51, with P0

5)n(en /un)2, and Cn5)m(un
22em

2 )/@un
2)mÞn(un

22um
2 )#.

The damping rates and the averaged nonequilibrium va
P` read@14#

GR52(
n

Gn , Gn5
1

4
Cnf n

2S~un!, ~6!

P`5
1

2GR
(

n
AP0f nCnJ~un!(

m

Dm
2

un
22em

2
. ~7!

Here f n5AP0un(mDm
2 /@em(un

22em
2 )#, and S(u)

5J(u)coth(\u/2kBT). The infinite set of frequenciesun is
determined by the pole equation for the undamped TSS

FIG. 1. Matching between path integral and Bloch-Redfie
The comparison of the dynamical Eqs.~2!, ~4!, and~5! for unbiased
TSS-dynamics depicts excellent agreement. For this resonant
dition (e05n* V, n* 50) the dynamics is well described by Eq

~5! with the single-mode frequencyũ05D̃0. Here and in the fol-
lowing figures frequencies are expressed in units ofD, times in
units of D21. The temperature is zero throughout.

FIG. 2. Driving induced quantum coherence phenomena. In
presence of a quasiresonant high-frequency field away from
zeros ofJn* (s/V), the population differencesz(t) exhibits a co-
herent oscillatory decay which is dominated by asingle mode os-

cillation frequencyũn* . A comparison between the predictions

the analytical solution~5! with just the single-mode frequencyũ1,
for a near-resonant field~i.e.,n* 51 with e15ue02Vu50.2D) with
the Bloch-Redfield result in Eq.~4! is depicted. Note that in the
undriven situation (s50) the TSS dynamics is almost complete
localized.
e

)
n

~en
22u2!1(

n
Dn

2 )
m;mÞn

~em
2 2u2!50. ~8!

Finally, to approximately take into account bath-induc
frequency-shifts the tunneling frequenciesũn are evaluated
from Eq. ~8! upon substitutingDn→Dn@12a ln(vc /D)#
ªD̃n . Thus, in this high-frequency regime the system gen
ally still exhibits damped coherent oscillations, as in the u
driven case, although, aninfinite set of oscillation frequen-
cies ũn with corresponding damping ratesGn enters this
driven dynamics. Superimposed to these coherent osc
tions there occurs an incoherent decay with rateGR towards
P` .

In Figs. 1–3 we depict comparisons amongst the num
cal predictions of the Born-Markov equations~4!, the path-

.

n-

e
e

FIG. 3. Controlling tunneling. In the presence of anoff-
resonanceno net separation of time scales occurs and the pop
tion sz(t) shows a complex interference pattern~a!. Note that the
numerical solutions of Bloch-Redfield and path-integral equati
coincide within linewidth. The TSS dynamics is dominated by
incoherentdecay towards its asymptotic limit~b!, so that quantum
coherence is lost. The incoherent decay rateGR , however, can be
strongly diminished. This is demonstrated in the upper left in
where thephoton assisted decay rateGR is plotted vs the dc-bias
e0. It exhibits characteristic resonance peaks at multiple integer
the driving frequencyV. These peaks are shifted replicas of t
dc-driven (s50) rate with different weights. Thus, a suitable ch
sen bias can enhance or suppress the decay of populations. Fi
the lower right inset shows theaveraged nonequilibriumpopulation
differenceP` . It exhibits a nonmonotonic dependence on the d
bias when combined with a high-frequency field. For appropri
values of the dc-field a population inversion (P`,0 whene0.0,
and vice versa! can occur.
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integral GME ~2!, and the analytical solution~5! for small
Ohmic friction and zero temperature. For the driven dyna
ics the agreement is remarkable. It increases further w
increasing temperature~not shown!. To achieve a conver
gence of Eq.~5! a truncation of the pole equation~8! to five
~or less, cf. Figs. 1 and 2! modes, characterized by (Dn ,en),
turned out to be sufficient. In Fig. 1 the influence of
unbiased(e050) control field is investigated. This corre
sponds to a resonant (e05n* V) field with n* 50. In Figs. 2
and 3 the case of a finite biase0Þ0 is depicted. Figure 2
depicts the near-resonant situationue02n* Vu5uen* u
!$D̃n* ,ue0u% away from the zeros ofJn* (s/V): the coherent
dynamics is now already well captured by thesingle reso-

nant modefrequencyũn* 5AD̃n*
2

1en*
2 . This finding gener-

alizes the small-dc-bias analysis in@15#. In addition, we de-
duce from the parameters chosen in Fig. 2 that our appro
can even work for intermediate driving frequencies (V

'e0). Due to the fact thatD̃n* <D, anden* ,e0, the field-
induced oscillation frequencyũn* can be much smaller tha
in the undriven case. In theoff-resonance situation
(uenu.Dn for all n) of Figs. 3~a! and 3~b!, sz(t) exhibits a
complex interference pattern with quantum coherence s
pressed. Moreover, the decay towards the nonstatio
equilibrium value occurs on a much longer time scale
compared to the case withs50. This result, observed re
cently in @16#, can be understood via close inspection of t
upper left inset in Fig. 3~b!, where the averaged decay ra
s
e

-
th

ch

p-
ry
s

e

GR is plotted versuse0. For the chosen parameters the dec
rate is strongly diminished. Moreover, the lower right ins
depicts the averaged nonequilibrium valueP` versus the dc-
bias e0. Here, photon assisted tunneling rules the poss
inversionof asymptotic population~i.e., P`,0, for e0.0,
and vice versa!.

In conclusion we maintain that in the perturbative regim
@a ln(vc /D)!1# it is numerically advantageous to evalua
the weak coupling tunneling dynamics by using the nons
tionary Markovian Bloch-Redfield equations, as compared
the non-Markovian path-integral GME. We find numerica
perfect agreement as depicted with Figs. 1–3. Within
time scale of tunneling we findno observable non-
Markovian effects. On physical grounds, the same rema
apply to the time evolution of the full density matrix. Not
however, that for the scaling regime~i.e., cutoff vc→`)
Bloch-Redfield theory increasingly fails; it then is necess
to correct even the path-integral GME with an addition
concocted renormalization scheme@6#. Finally, our analyti-
cal scheme may prove prominent in order to optimize qu
tum coherence.
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